Detection of the Pathogenic Fungus, *Batrachochytrium dendrobatidis,* in Anurans of Huntley Meadows Park, Fairfax County, Virginia

Todd A. Tupper^{1†*}, Lauren D. Fuchs^{2†}, Caitlin O'Connor-Love¹ Robert Aguilar³ Christine Bozarth¹, David Fernandez¹

> ¹Northern Virginia Community College Department of Math, Science, and Engineering 5000 Dawes Avenue Alexandria, Virginia 22311

> > ²George Mason University Department of Systems Biology 10900 University Blvd Manassas, VA 20110

³Smithsonian Environmental Research Center Fish and Invertebrate Ecology Lab 647 Contees Wharf Road Edgewater, Maryland 21037

*Corresponding author: ttupper@nvcc.edu †Authors contributed equally to the development of the manuscript

Introduction

The chytrid fungus, *Batrachochytrium dendrobatidis* (hereafter *Bd*), has been identified as a proximate driver of amphibian population declines and extinctions worldwide (Lambertini et al., 2016; Lips et al., 2006; Olson et al., 2013). The pathogen is now widespread across much of North America, demonstrating a highly heterogeneous spatial distribution (Lannoo et al., 2011). *Bd*-related declines have been documented in several western states (Arizona, California and Colorado; Bradley et al., 2002; Briggs et al., 2005; Muths et al., 2003). Portions of the southwest and the eastern United States have reported high prevalence of the pathogen, but without concomitant declines (Lannoo et al., 2011; Petersen et al., 2016).

Bd is a pathogenic mycotic species, which produces flagellated, motile spores that colonize keratinized epithelial cells in the skin of adult amphibians, and keratinized mouthparts of larval amphibians (Brutyn et al., 2012). Clinical manifestations of *Bd* infection reflect the diseased state known as chytridiomycosis. Hyperplasia and keratosis in the diseased state interfere with cutaneous respiration and osmoregulation, and can be lethal (Berger et al., 1998; Kilpatrick et al., 2010; Rachowicz et al., 2006; Voyles et al., 2009). Susceptibility to the pathogen, and effects of the infection vary both within and among species, with cases ranging from asymptomatic to fatal (Beebee and Griffiths, 2005; Briggs et al, 2010; Savage et al., 2011). This variation has been attributed to differences in innate defenses and host life-history traits (Harris et al., 2006; Lips et al., 2003; Woodhams et al., 2007). Habitat and climatic conditions have been shown to significantly influence the virulence of *Bd* infection, with lethal outbreaks of chytridiomycosis most commonly associated with cooler, wetter, and thermally consistent environmental conditions (Berger et al., 2004; Bielby et al., 2008; Kriger and Hero, 2007; Murray et al., 2011; Rowly and Alford, 2007; Savage et al., 2011).

Catesbeiana 37(2): 109-120

It is thought that *Bd* may be endemic to many regions of North America, including the eastern United States, where the pathogen has been present since the 1960's, and known to infect at least 48 amphibian species (Hughey et al., 2014; Lannoo et al., 2011; Longcore et al., 2007; Ouellet et al., 2005). In the Mid-Atlantic region, *Bd* has been shown to exist without associated declines (Goodman and Ararso, 2012; Grant et al., 2008; Hughey et al., 2014; Lannoo et al., 2011; Petersen et al., 2016; Pullen et al., 2010). Propagation of the fungus and/or virulence has been seemingly discouraged by local climatic conditions. However, synergistic interactions between a changing climate and a suite of anthropogenic stressors may function to alter infection dynamics, potentially inducing disease outbreaks and subsequent declines of local amphibian populations (Davidson et al., 2003; Longcore et al., 2007; Pounds et al., 2006). This latent threat highlights the need for long-term monitoring. Monitoring data are critical to identifying emerging patterns of *Bd* infectivity, understanding its effect on local amphibian populations, and are integral to management of natural areas containing amphibifauna (Olson et al., 2013).

Information on the prevalence of *Bd* in anuran species throughout Virginia is relatively limited. Although prior studies suggest that *Bd* is widespread in the state (Hughey et al., 2014), there appear to be inconsistent trends in rates of infection, with overall prevalence (across anuran species) ranging from as low as 8% (central Virginia; Goodman and Ararso, 2012) to as high as 35% (Hughey et al., 2014). Systematic *Bd* surveys have also been conducted in areas of western, southern and central Virginia (Goodman and Ararson, 2012; Gratwicke et al., 2011; Hughey et al., 2014; Pullen et al., 2010). To the best of our knowledge, only one other study has surveyed for *Bd* in Northern Virginia (Augustine and Neff, 2016). However, because of the low sample size (N = 25), and minimal representation of anuran species (three species; N = 11), supplemental data is necessary to more accurately assess *Bd* prevalence in this region of Virginia. Our primary objective was to determine whether *Bd* is present in this portion of the Mid-Atlantic region. Data from our study will aid in the development and implementation of disease management protocols on local and regional scales.

Methods

We collected samples at Huntley Meadows Park in Fairfax County, Virginia (Figure 1; 38°45'36.57" N -77°05'44.13" W). Huntley Meadows Park is approximately 577 ha and, other than a green corridor on its southeast side, is predominately surrounded by suburban developments (Figure. 1). Huntley Meadows Park is comprised of a large central wetland that is hydrologically connected to the majority of the park's other smaller wetlands, which range from early-successional, herbaceous open-canopy wetlands to later-successional hardwood swamps. Between 26 March and 5 June 2016, we opportunistically sampled anurans throughout Huntley Meadows Park. Adhering to biosecurity standards outlined by the Virginia Herpetological Society (VHS, 2016), we hand-captured anurans, and swabbed the skin surface with sterile dry swabs (no. MW113, Medical Wire and Equipment Company, Durham, NC). We stored the swabs in 1.5 mL microcentrifuge tubes and kept them frozen until molecular analyses. We followed the Purification of Total DNA from Animal Tissues protocol (Oiagen®, Valencia, CA) to elute DNA from each swab. We prepared a PCR master mix containing 10 μ L Sso Advanced[™] universal probes supermix (Bio-Rad, Hercules, CA), 200 nM of each primer (ITS1-3Chytr and 5.8sChytr; Boyle et al. 2004), 250 nM MGB probe, and sterile water. We combined 18 µL of the master mix and 2 µL of eluted DNA in a 96-well PCR plate. Positive and negative controls were included for both the DNA elusion and amplification. The positive control required a single, standard concentration as we were testing for presence of the *Bd* pathogen,

Figure 1. Huntley Meadows Park. Blue icons represent sampling locations. We swabbed multiple individuals at each sampling location. We presented the location without a +/- symbol because we found both *Bd* positive and negative individuals at most sampling locations.

and not zoospore load. To detect *Bd*, we used a CFX96 TouchTM Real-Time PCR Detection System (Bio-Rad, Hercules, CA). Samples were exposed to 95°C for three minutes, then run through 45 cycles of 95°C for 30-sec and 55°C for 45-sec. We performed three rounds of PCR per sample. Samples were considered positive if they fluoresced prior to the 40th cycle of the PCR reaction on at least two occasions.

We used multiple logistic regression to determine which variables were significant predictors of *Bd* infection. The predictors were day of year, sex, ecological guild, species and site. The sex variable was an ordinal variable consisting of three categories: male, female, juvenile. Therefore, it also was a proxy for age (adult/subadult). The ecological guild variable was also ordinal and consisted of two categories, terrestrial/arboreal (Eastern American Toad, Cope's Gray Treefrog Green Treefrog, Spring Peeper) and aquatic (American Bullfrog, Green Frog, Southern Leopard Frog). We assessed goodness-of-fit and predictive ability of the logistic regression model with Hosmer-Lemeshow and Somers' D statistics, respectively. We then used descriptive statistics, chi-square tests, and independent sample t-tests to further examine variables identified as significant by multiple logistic regression analysis. Zar (2009) was used to guide statistical analyses. Minitab version 17 was used for all statistical analyses (www.minitab.com), and

ArcGIS version 10.3 (www.ersi.com) and DivaGIS version 7.5.0 (www.diva-gis.org) were used to create maps. Nomenclature follows Crother (2012).

Results

We collected 100 samples between 26 March and 5 June 2016. While we were unable to sample equally among species, we sampled approximately evenly between ecological guilds. We collected the majority of samples in April and May (Tables 1 and 2). Multiple logistic regression

Table 1. Species sampled for *Bd* at Huntley Meadows Park. 1 = terrestrial/arboreal ecological guild. 2 = aquatic ecological guild.

Common Name	Scientific Name	Ν	# Positive	% Positive
Eastern American Toad ¹	Anaxyrus americanus	13	3	23
American Bullfrog ²	Lithobates catebeianus	11	3	27
Cope's Gray Treefrog ¹	Hyla chrysoscelis	9	1	11
Green Frog ²	Lithobates clamitans	19	7	37
Green Treefrog ¹	Hyla cinerea	11	1	9
Southern Leopard Frog ²	Lithobates sphenocephalus	23	18	78
Spring Peeper ¹	Pseudacris crucifer	13	1	8

Table 2.	Sampling	distribution a	and number a	and proportic	on of Bd detections	s per month.

Month	Ν	# Positive	% Positive
March	9	8	88.9
April	22	13	59.1
May	52	11	21.2

indicated that sex (age); (Z = 3.11; P < 0.05), ecological guild (Z = 3.02; P < 0.05) and day of year (Z = -2.42; P < 0.05) were strong predictors of infection when considered together with each other and species, and site (G = 48.1; df = 5; P < 0.001; Hosmer-Lemeshow P = 0.91; Somers' D = 0.78; Table 3). Species and site were not indicated as significant. We identified

Table 3.	Multiple	logistic	regression	output.	Coef =	coefficient.	SE =	standard error.
	···· · · · · · · · · · · · · · · · · ·	- 0	- 0	- · · · · · · · · · · · · · · · · · · ·				

Predictor	Coef	SE Coef	Ζ	Р
Constant	-3.940	3.529	-1.12	
Day of Year	-0.042	0.018	-2.42	
Sex (age)	1.359	0.437	3.11	
Guild	2.629	0.869	3.02	
Species	0.230	0.199	1.16	
Site	0.133	0.097	1.38	

significantly higher infection rates in adult male and female anurans ($\chi^2 = 7.6$; df = 2; P < 0.05; Table 4) of the aquatic ecological guild ($\chi^2 = 17.9$; df = 1; P < 0.001 see Table 1) earlier in the season ($\chi^2 = 25.0$; df = 3; P < 0.001; see Table 2). Of the 99 testable samples, 34 were positive, yielding an overall infection rate of 34.3%.

Table 4. Number and proportion of *Bd* detections across sexes, and correspondingly, by age class.

		#	
Sex	Ν	Positive	% Positive
Female	41	13	31.7
	15	1	6.7
Male	39	18	46.2

Discussion

To the best of our knowledge, our work is only the second study to document *Bd* in anurans of Northern Virginia. Because information on *Bd* in this region (in anurans) are so limited, our data are particularly valuable—especially considering that we were able to increase the sample size and expand upon the number of species sampled. Our findings, coupled with results from other Virginia studies, confirm that *Bd* is prevalent throughout the state (Davison and Chambers, 2011; Goodman and Ararson, 2012; Gratwicke et al., 2011; Hughey et al., 2014; Lannoo et al., 2011; Petersen et al., 2016; Pullen et al., 2010). With the exception of Hughey et al. (2014), the overall infection rate in anurans from our study (34.3%; Table 5) was higher than all other studies

Table 5. *Bd* prevalence rates (% *Bd* positive) for studies conducted throughout Virginia and Maryland.

Study	Location	Ν	% <i>Bd</i> Positive
Fuchs et al., 2017	Anne Arundel County MD	116	10
Davidson and Chambers, 2011	Wise County VA	41	14.6
Goodman and Ararso, 2012	Central VA	103	7.8
Grant et al., 2008	C&O National Park, MD	53	17
Hughey et al., 2014	Western VA	292	35
Pullen et al., 2011	Central VA	740	14.1
Tupper et al., 2017	Fairfax County VA	99	34.3

conducted in Virginia (Davison and Chambers, 2011; Goodman and Ararson, 2012; Gratwicke et al., 2011; Lannoo et al., 2011; Petersen et al., 2016; Pullen et al., 2010) and neighboring Maryland (Fuchs et al., 2017; Grant et al., 2008).

Interestingly, the overall infection rate reported in our study also falls among the highest relative to all studies conducted throughout the entire eastern United States (*see* Petersen et al., 2016 and Rothermel et al., 2008 for exceptions). Huntley Meadows Park, a natural depression surrounded by densely populated suburban development (dgif.virginia.gov), is the principle education park for Prince William, Fairfax, and Arlington Counties, and it is host to over 200,000 visitors annually (Kathleen O'Shea, pers. comm). These factors may expose the park's wildlife to a range of anthropogenic stressors, such as pollution (herbicides pesticides, fossil fuel runoff,

siltation), introduced predators (Northern Snakehead *Channa argus*; FOHMP, 2017), human interaction, and noise (Beebee and Griffiths, 2005; Blaustein et al., 2012; Pullen et al., 2008). Exposure to anthropogenic stressors can reduce immune function in hosts and consequently increase disease prevalence (Bruno et al., 2003; Carey et al., 1999; Daszak et al. 1999, 2001; Hoverman et al., 2011; Rohr et al., 2008). It is possible that anthropogenic stressors could have contributed to the relatively high rate of infection found in our study. However, further inquiry would be necessary to assess that statement.

Multiple logistic regression analysis indicated that three variables contributed significantly to infection: day of year, sex (age class), and ecological guild. We found *Bd* to be more prevalent in earlier months of sampling. This finding parallels various temperate regions in situ studies that show infection rates declining as the season progresses and warms (Hughey et al., 2014; Kinney et al., 2011; Longcore et al., 2007; Muths et al., 2008; Petersen et al., 2016). This trend is likely because *Bd* produces zoospores (in vitro) between 4 and 25°C and its pathogenicity declines when temperatures are above 23°C (Berger et al., 2004; Lamirande and Nichols, 2002; Piotrowski et al., 2004; Woodhams et al., 2003).

Timing of sampling may have influenced our finding of lower infection rates among juveniles and metamorphs, in comparison to both male and female adult anurans. Sampling for subadults was greater during periods when metamorphosis and dispersal occurred (*see* Wright and Wright, 1949 and http://www.virginiaherpetologicalsociety.com/). Thus, 87% of our juvenile samples were from June (a warmer month that would likely yield fewer *Bd* positive samples) and predominantly from Spring Peeper (85%), a species that has often demonstrated lower *Bd* infection rates than other anurans (Fuchs et al., 2017; Longcore et al., 2007; Rothermel et al., 2008; Tupper et al., 2011).

We found *Bd* to be more prevalent in aquatic species (53.8% overall, with the highest infection rate in Southern Leopard Frog) than in terrestrial/arboreal species (13%). Similar patterns in infectivity rates across ecological guilds have previously been reported (Kriger and Hero, 2007; Longcore et al., 2007; Tupper et al., 2011). Water is an effective medium for transmission of *Bd* zoospores (Kolby et al., 2015), and it is thought that the lower degree of thermal variability in aquatic environments, relative to terrestrial environments, may be critical to the pathogen's ability to more readily infect aquatic or semi-aquatic amphibians (Chatfield et al., 2012; Kriger and Hero, 2007; Moffitt et al., 2015; Weldon et al., 2004). Although *Bd* is more prevalent in aquatic species, it is not confined to aquatic guilds, as we detected it in the American Toad, Cope's Gray Treefrog, Green Treefrog and Spring Peeper. Additionally, numerous studies have found it in terrestrial/arboreal species (Berger et al., 2005; Daszak et al., 2003; Lannoo et al., 2011; Longcore et al., 2007; Oullett et al., 2005; Rothermel et al., 2008).

Previous studies conducted throughout the Mid-Atlantic region indicate a widespread occurrence of *Bd* in multiple anuran species without associated signs of chytridiomycosis (Fuchs et al., 2017; Grant et al., 2008; Pullen et al., 2010) and without related population declines (Petersen et al. 2016; Longcore et al. 2007; Lannoo et al. 2011; Rothermel et al. 2008). While we also did not observe symptoms of chytridiomycosis, it is thought that cases of the disease may be increasing locally or invading previously uninhabited regions (Daszak et al., 2003). Climate change may shift environmental conditions in favor of the pathogen. Consequently, the potential for interactions between the host and pathogen, coupled with a suite of anthropogenic factors, may influence outcomes of infection in unexpected ways (Davidson et al., 2003; Longcore et al., 2007; Pounds et al., 2006). We therefore recommend continued disease monitoring in the region, especially where the pathogen is known to exist, and in locations where host immunity may be compromised by anthropogenic stressors. Huntley Meadows Park is one such location, and serves as a critical refuge for wildlife inhabiting increasingly urbanized Northern Virginia. We encourage VHS members to follow Huntley Meadows Park biosecurity protocols to decrease the potential for disease transmission. If visiting the park, please inquire about sanitation stations at the at the visitor center before walking trails

Acknowledgements

We would like to thank Dave Lawlor, Resource Manager, at Huntley Meadows Park, and Bill Clark at Earth Point for logistical support. Kiran Bahra of Queen Mary University of London provided field assistance. Matthew Becker provided important feedback and helped to improve the quality of our work. Lab work was completed at the Alexandria Campus of Northern Virginia Community College Department of Math, Science, and Engineering. Funding was provided by the Northern Virginia Community College Educational Foundation. *Bd* sampling was approved by the Virginia Department of Game and Inland Fisheries.

Literature Cited

- Augustine, L., and M. Neff. 2016. Determining the prevalence of amphibian chytrid fungus (*Batrachochytrium dendrobatidis*) and Ranavirus at Long Branch Nature Center in Arlington, Virginia. Catesbeiana 36: 35–42.
- Beebee, T. J. C., and R. A. Griffiths. 2005. The amphibian decline crisis: A watershed for conservation biology? Biological Conservation 125: 271–281.
- Berger, L., R. Speare, P. Daszak, D. E. Green, A. A. Cunningham, C. L. Goggin, R. Slocombe, M. A. Ragan, A. D. Hyatt, K. R. McDonald, H. B. Hines, K. R. Lips, G. Marantelli, and H. Parkes. 1998. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences of the United States of America 95, 9031–9036.
- Berger, L., R. Speare, H. B. Hines, G. Marantelli, A. D. Hyatt, K. R. McDonald, L. F. Skerratt, V. Olsen, J. M. Clarke, G. Gillespie, M. Mahony, N. Sheppard, C. Williams, and M. J. Tyler. 2004. Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Australian Veterinary Journal 82: 31–36.
- Berger, L., R. Speare, and L. F. Skerratt, 2005. Distribution of *Batrachochytrium dendrobatidis* and pathology in the skin of green tree frogs *Litoria caerulea* with severe chytridiomycosis. Diseases of Aquatic Organisms 68, 65–70.
- Bielby, J., N. Cooper, A. A. Cunningham, T. W. J. Garner, and A. Purvis. 2008. Predicting susceptibility to future declines in the world's frogs. Conservation Letters 1: 82–90.
- Blaustein A. R., S. S. Gervasi, P. T. J. Johnson, J. T. Hoverman, L. K. Belden, et al. (2012) Ecophysiology meets conservation: understanding the role of disease in amphibian population declines. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 1688–1707.

- Boyle D.G., D.B. Boyle, V. Olsen, J.A.T. Morgan, & A.D. Hyatt. 2004. Rapid quantitative detection of chytridiomycosis (*Batrachochytrium dendrobatidis*) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms 60:141–148.
- Bradley, G. A., P. C. Rosen, M. J. Srdl, T. R. Jones, and J. E. Longcore. 2002. Chytridiomycosis in native Arizona frogs. Journal of Wildlife Diseases 38:206–212.
- Briggs, C. J., V. T. Vredenburg, R. A. Knapp, and L. J. Rachowicz. 2005. Investigating the population-level effects of chytridiomycosis: an emerg- ing infectious disease of amphibians. Ecology 86:3149–3159.
- Briggs, C. J., A. R. Knapp, and V. T. Vredenburg. 2010. Enzootic and epizootic dynamics of the chtryid fungal pathogen of amphibians. Proceedings of the National Academy of Sciences of the United States of America 107: 9695–9700. http://doi.org/10.1073/ pnas.0912886107.
- Bruno, J. F., L. E. Petes, C. D. Harvell, and A. Hettinger. 2003. Nutrient enrichment can increase the severity of coral diseases. Ecology Letters 6:1056–1061.
- Brutyn, M., K. D'Herde, M. Dhaenens, P. Van Rooij, E. Verbrugghee, A. D. Hyatt, S. Croubels, D. Deforce, R. Ducatelle, F. Haesebrouck, A. Martel, and F. Pasmans. 2012. *Batrachochytrium dendrobatidis* zoospore secretions rapidly disturb intercellular junctions in frog skin. Fungal Genetics and Biology 49: 830–837.
- Carey, C., N. Cohen, and L. Rollins-Smith. 1999. Amphibian declines: an immunological perspective. Developmental and Comparative Immunology 23:459–472.
- Chatfield, M. W., H. P. Moler, and C. L. Richards-Zawacki. 2012. The amphibian chytrid fungus, *Batrachochytrium dendrobatidis*, in fully aquatic salamanders from southeastern North America. PLoS ONE 7:e44821.
- Crother, B. I. 2012. Scientific and standard English names of amphibians and reptiles of North America North of Mexico, pp. 1–92, SSAR Herpetological Circular 39.
- Daszak, P., L. Berger, A. A. Cunningham A. D. Hyatt, D. E. Green, and R. Speare. 1999. Emerging infectious diseases and amphibian population declines. Emerging Infectious Diseases 5:735-748.
- Daszak, P., A. A. Cunningham, and A. D. Hyatt. 2001. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Tropica 78:103–116.
- Daszak, P., A. A. Cunningham, and A. D. Hyatt. 2003. Infectious disease and amphibian population declines. Diversity and Distributions 9: 141–150.
- Davidson, E. W., M. Parris, J. P. Collins, J. E. Longcore, A. P. Pessier, and J. Brunner. 2003. Pathogenicity and trans- mission of chytridiomycosis in tiger salamanders (Ambylostoma tigrinum). Copeia 2003:601-607.

- Davidson, S. R. and D. L. Chambers. 2011. Occurrence of *Batrachochytrium dendrobatidis* in amphibians of Wise County, Virginia, USA. Herpetological Review 42: 214–216.
- FOHMP (Friends of Huntley Meadows Park). 2017. Northern Snakehead Fish: Huntley Meadows Park. http://www.friendsofhuntleymeadows.org/snakehead%202011.html. Accessed May 2017.
- Fuchs, L. F., T. A. Tupper, T. Sepapur, R. Aguilar, and C. A. Bozarth. 2017. A Survey of the Pathogenic Fungus, *Batrachochytrium dendrobatidis*, at the Smithsonian Environmental Research Center, Anne Arundel County, Maryland. Catesbeiana 37: 32-39.
- Goodman, R.M., and Y.T Ararso. 2012. Survey of ranvirus and the fungus *Batrachochytrium dendrobatidis* in frogs of central Virginia, USA. Herpetological Review 43:78–80.
- Grant, E. H. C., L. L. Bailey, J. L. Ware, and K. L. Duncan. 2008. Prevalence of the amphibian pathogen *Batrachochytrium dendrobatidis* in stream and wetland populations in Maryland, USA. Applied Herpetology 5: 233–241.
- Gratwicke, B., M. Evans, E. H. C. Grant, J. Greathouse, W. J. McShea, N. Rotzel, and R. C. Fleischer. 2011. Low prevalence of *Batrachochytrium dendrobatidis* detected in Appalachian salamanders from Warren County, Virginia, USA. Herpetological Review 42:217-219.
- Harris, R. N., T. Y. James, A. Lauer, M. A. Simon, and A. Patel. 2006. Amphibian pathogen *Batrachochytrium dendrobatidis* is inhibited by the cutaneous bacteria of amphibian species. EcoHealth 3:53–56.
- Hoverman, J. T., M. J. Gray, N. A. Haislip, and D. L. Miller. 2011. Phylogeny, life history, and ecology contribute to differences in amphibian susceptibility to ranaviruses. EcoHealth 8:301-319.
- Hughey, M.C., M.H. Becker, J.B. Walke, M.C. Swartwout, and L. K. Belden. 2014. *Batrachochytrium dendrobatidis* in Virginia amphibians within and among site variation in infection. Herpetological Review 45:428–438.
- Kilpatrick, A. M., C. J. Briggs, and P. Daszak. 2010. The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends in Ecology and Evolution 25:109–118.
- Kinney VC, J. L. Heemeyer, A. P. Pessier, and M. J. Lannoo. 2011. Seasonal pattern of *Batrachochytrium dendrobatidis* infection and mortality in *Lithobates areolatus*: Affirmation of Vredenburg's "10,000 zoospore rule". PLoS ONE 6(3):e16708. doi:10.1371/journal.pone.0016708.
- Kolby, J. E., K. M. Smith, S. D. Ramirez, F. Rabemanjara, A. P. Pessier, J. L. Brunner, C. S. Goldberg, L. Berger, and L. F. Skerratt. 2015. Rapid response to evaluate the presence of amphibian Chytrid fungus (*Batrachochytrium dendrobatidis*) and Ranavirus in wild amphibian populations in Madagascar. PLoS ONE 10(6): e0125330.doi:10.1371/journal. pone.0125330.

- Kriger, K. M., and J M. Hero. 2007. The chytrid fungus *Batrachochytrium dendrobatidis* is nonrandomly distributed across amphibian breeding habitats. Diversity and Distributions 13:781–788.
- Lambertini, C., C. G. Becker, T. S. Jenkinson, D. Rodriguez, D. da Silva Leite, T. Y. James, K. R. Zamudio, and L. F. Toledo. 2016. Local phenotypic variation in amphibian-killing fungus predicts infection dynamics. Fungal Ecology 20: 15-21.
- Lamirande, E. W., and D. K. Nichols. 2002. Effects of host age on susceptibility to cutaneous chytridiomycosis in blue-and- yellow poison dart frogs (*Dendrobates tinctorius*). In: Proceedings of the Sixth International Symposium on the Pathology of Reptiles and Amphibians, St. Paul, MN, USA.
- Lannoo, M. J., C. Petersen, R. E. Lovich, P. Nanjappa, C. Phillips, J. C. Mitchell, and I. Macallister. 2011. Do frogs get their kicks on Route 66? Continental U.S. Transect reveals spatial and temporal patterns of *Batrachochytrium dendrobatidis* infection. PLoS ONE 6: e22211. doi: 10.1371/journal.pone.0022211.
- Lips, K. R., J. D. Reeve, and L. R. Witters. 2003. Ecological traits predicting amphibian population declines in Central America. Conservation Biology 17:1078–1088.
- Lips, K. R., F. Brem, R. Brenes, J. D. Reeve, R. A. Alford, J. Voyles, C. Carey, L. Livo, A.P. Pessier, and J. P. Collins. 2006. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Sciences of the United States of America 103: 3165–3170.
- Longcore, J. R., J. E. Longcore, A. P. Pessier, and W. A. Halteman. 2007. Chytridiomycosis widespread in anurans of northeastern United States. Journal of Wildlife Management 71: 435–444.
- Moffitt, D., L. A. Williams, A. Hastings, M. W. Pugh, M. M. Gangloff, and L. Siefferman. 2015. Low prevalence of the amphibian pathogen *Batrachochytrium dendrobatidis* in the southern Appalachian Mountains. Herpetological Conservation and Biology 10:123-136.
- Murray, K. A., D. Rosauer, H. McCallum, and L. F. Skerratt. 2011. Integrating species traits with extrinsic threats: closing the gap between predicting and preventing species declines. Proceedings of the Royal Society B: Biological Sciences 278: 1515–1523.
- Muths, E., P. S. Corn, A. P. Pessier, and D. E. Green. 2003. Evidence for disease-related amphibian decline in Colorado. Biological Conservation 110: 357–365.
- Muths, E., D. S. Pilliod, and L. J. Livo. 2008. Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA. Biological Conservation 141: 1484–1492.
- Olson, D. H., D. M. Aanensen, K. L. Ronnenberg, C. I. Powell, S. F. Walker, J. Bielby, T. W. J. Gerner, G. Weaver, The Bd Mapping Group, and M. C. Fisher. 2013. Mapping the global emergence of *Batrachochytrium dendrobatidis*, the amphibian chytrid fungus. PLoS ONE 8(2): e56802. doi: 10.1371/journal.pone.0056802.

- Oullet, M., I. Mikaelian, B. D. Pauli, J. Rodriguez, and D. M. Green. 2005. Historical evidence of widespread chytrid infection in North American amphibian populations. Conservation Biology 19: 1431–1440.
- Petersen, C. E., R. E. Lovich, C. A. Phillips, M. J. Dreslik, and M. J. Lannoo. 2016. Prevalence and seasonality of the amphibian chytrid fungus *Batrachochytrium dendrobatidis* along widely separated longitudes across the United States. EcoHealth pp 1-15. DOI 10.1007/ s10393-016-1101-4.
- Piotrowski, J. S., S. L. Annis, and J. E. Longcore. 2004. Physiology of *Batrachochytrium dendrobatidis*, a chytrid pathogen of amphibians. Mycologia 96:9–15.
- Pounds, J. A., M. R. Bustamante, L. A. Coloma, J. A. Consuegra, M. P. L. Fogden, P. N. Foster, E. La Marca, K. L. Masters, A. Merino-Viteri, R. Puschendorf, S. R. Ron, G. A. Sanchez-Azofeifa, C. J. Still, and B. E. Young. 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167.
- Pullen, K. D., A. M. Best, and J. L. Ware. 2010. Amphibian pathogen *Batrachochytrium dendrobatidis* prevalence is correlated with season and not urbanization in central Virginia. Diseases of Aquatic Organisms 91: 9–16.
- Rachowicz LJ, et al. (2006) Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology 87:1671–1683.
- Rohr J. R., A. M. Schotthoefer, T. R. Raffel, H. J. Carrick, N. Halstead, J. T. Hoverman JT, et al. 2008. Agrochemicals increase trematode infections in a declining amphibian species. Nature 455:U1235–U1250.
- Rothermel, B. B., S. C. Walls, J. C. Mitchell, C. K. Dodd Jr., L. K. Irwin, D. E. Green, V. M. Vasquez, J. W. Petranka, and D. J. Stevenson. 2008. Widespread occurrence of the amphibian chytrid fungus *Batrachochytrium dendrobatidis* in the southeastern USA. Diseases of Aquatic Organisms 82: 3–18.
- Rowley, J. J. and R. A. Alford. 2007. Behaviour of Australian rainforest stream frogs may affects the transmission of chytridiomycosis. Diseases of Aquatic Organisms 77: 1–9.
- Savage, A. E., M. J. Sredl, and K. R. Zamudio. 2011. Disease dynamics vary spatially and temporally in a North American amphibians. Biological Conservation 144: 1910–1915.
- Tupper, T. A., J. Streicher, S. Greenspan, B. C. Timm, and R. P. Cook. 2011. Detection of *Batrachochytrium dendrobatidis* in anurans of Cape Cod National Seashore, USA. Herpetological Review. 42:61-65.
- VDGIF (Virginia Department of Game and Inland Fisheries). 2017. CMN04 Huntley Meadows Park. https://www.dgif.virginia.gov/vbwt/sites/huntley-meadows-park/. Accessed May 2017.

- VHS (Virginia Herpetological Society). 2016. Infectious diseases of our native herps and disinfection protocols. http://virginiaherpetologicalsociety.com/disease/index.htm. Accessed May 2017.
- Voyles J, et al. (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326:582–585.
- Weldon, C., L. H. Du Preez, A. D. Hyatt, R. Muller, and R. Speare. 2004. Origin of the amphibian chytrid fungus. Emerging Infectious Diseases 10:2100.
- Woodhams, D. C., R. A. Alford, and G. Marantelli. 2003. Emerging disease of amphibians cured by elevated body temperature. Diseases of Aquatic Organisms 55:65–67.
- Woodhams, D. C., K. Ardipradja, R. A. Alford, G. Marantelli, L. K. Reinert, and L. A. Rollins-Smith. 2007. Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Animal Conservation 10: 409–417.
- Wright, A. H., and A. A. Wright. 1949. Handbook of Frogs and Toads of the United States and Canada. Third Edition. Ithaca, New York, U.S.A.: Comstock Publishing Associates.

Zar, J.H. 2009. Biostatistical Analysis. 5 edition. Pearson, Upper Saddle River, N.J. 960 pp.